Nested canalyzing depth and network stability.

نویسندگان

  • Lori Layne
  • Elena Dimitrova
  • Matthew Macauley
چکیده

We introduce the nested canalyzing depth of a function, which measures the extent to which it retains a nested canalyzing structure. We characterize the structure of functions with a given depth and compute the expected activities and sensitivities of the variables. This analysis quantifies how canalyzation leads to higher stability in Boolean networks. It generalizes the notion of nested canalyzing functions (NCFs), which are precisely the functions with maximum depth. NCFs have been proposed as gene regulatory network models, but their structure is frequently too restrictive and they are extremely sparse. We find that functions become decreasingly sensitive to input perturbations as the canalyzing depth increases, but exhibit rapidly diminishing returns in stability. Additionally, we show that as depth increases, the dynamics of networks using these functions quickly approach the critical regime, suggesting that real networks exhibit some degree of canalyzing depth, and that NCFs are not significantly better than functions of sufficient depth for many applications of the modeling and reverse engineering of biological networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biologically Relevant Classes of Boolean Functions

A large influx of experimental data has prompted the development of innovative computational techniques for modeling and reverse engineering biological networks. While finite dynamical systems, in particular Boolean networks, have gained attention as relevant models of network dynamics, not all Boolean functions reflect the behaviors of real biological systems. In this work, we focus on two cla...

متن کامل

A Parametrization for Nested Canalyzing Functions Abdul Salam Jarrah, Reinhard Laubenbacher and Blessilda Raposa

Nested canalyzing functions have been studied recently in the context of Boolean network models of gene regulatory networks. This paper provides a parametrization for the class of nested canalyzing functions by the points of an algebraic variety over the field with two elements. This variety is defined by the set of relations that the coefficients of such a function need to satisfy. This set of...

متن کامل

Nested Canalyzing, Unate Cascade, and Polynomial Functions.

This paper focuses on the study of certain classes of Boolean functions that have appeared in several different contexts. Nested canalyzing functions have been studied recently in the context of Boolean network models of gene regulatory networks. In the same context, polynomial functions over finite fields have been used to develop network inference methods for gene regulatory networks. Finally...

متن کامل

Determining a Singleton Attractor of a Boolean Network with Nested Canalyzing Functions

In this article, we study the problem of finding a singleton attractor for several biologically important subclasses of Boolean networks (BNs). The problem of finding a singleton attractor in a BN is known to be NP-hard in general. For BNs consisting of n nested canalyzing functions, we present an O(1.799(n)) time algorithm. The core part of this development is an O(min(2(k/2) · 2(m/2), 2(k)) ·...

متن کامل

The Number of Multistate Nested Canalyzing Functions

Identifying features of molecular regulatory networks is an important problem in systems biology. It has been shown that the combinatorial logic of such networks can be captured in many cases by special functions called nested canalyzing in the context of discrete dynamic network models. It was also shown that the dynamics of networks constructed from such functions has very special properties ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bulletin of mathematical biology

دوره 74 2  شماره 

صفحات  -

تاریخ انتشار 2012